Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells.
نویسندگان
چکیده
Butyrate, a key short-chain fatty acid metabolite of colonic luminal bacterial action on dietary fiber, serves as a primary fuel for the colonocytes, ameliorates mucosal inflammation, and stimulates NaCl absorption. Absorption of butyrate into the colonocytes is essential for these intracellular effects. Monocarboxylate transporter 1 (MCT1) plays a major role in colonic luminal butyrate absorption. Previous studies (Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. Adv Immunol 121: 91-119, 2014.) showed decreased MCT1 expression and function in intestinal inflammation. We have previously shown (Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G, Dudeja PK. Am J Physiol Gastrointest Liver Physiol 290: G30-G35, 2006.) impaired butyrate absorption in human intestinal epithelial Caco-2 cells due to decreased MCT1 level at the apical cell surface following enteropathogenic E. coli (EPEC) infection. Current studies, therefore, examined the potential role of probiotic Lactobacilli in stimulating MCT1-mediated butyrate uptake and counteracting EPEC inhibition of MCT1 function. Of the five species of Lactobacilli, short-term (3 h) treatment with L. acidophilus (LA) significantly increased MCT1-mediated butyrate uptake in Caco-2 cells. Heat-killed LA was ineffective, whereas the conditioned culture supernatant of LA (LA-CS) was equally effective in stimulating MCT1 function, indicating that the effects are mediated by LA-secreted soluble factor(s). Furthermore, LA-CS increased apical membrane levels of MCT1 protein via decreasing its basal endocytosis, suggesting that LA-CS stimulation of butyrate uptake could be secondary to increased levels of MCT1 on the apical cell surface. LA-CS also attenuated EPEC inhibition of butyrate uptake and EPEC-mediated endocytosis of MCT1. Our studies highlight distinct role of specific LA-secreted molecules in modulating colonic butyrate absorption.
منابع مشابه
Enteropathogenic Escherichia coli inhibits butyrate uptake in Caco-2 cells by altering the apical membrane MCT1 level.
Enteropathogenic Escherichia coli (EPEC), a food-borne human pathogen, is responsible for infantile diarrhea, especially in developing countries. The pathophysiology of EPEC-induced diarrhea, however, is not completely understood. Our recent studies showed modulation of Na+/H+ and Cl-/HCO3- exchange activities in Caco-2 cells in response to EPEC infection. We hypothesized that intestinal short-...
متن کاملLactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria.
Four human Lactobacillus acidophilus strains were tested for their ability to adhere onto human enterocyte like Caco-2 cells in culture. The LA 1 strain exhibited a high calcium independent adhesive property. This adhesion onto Caco-2 cells required a proteinaceous adhesion promoting factor, which was present in the spent bacterial broth culture supernatant. LA 1 strain also strongly bound to t...
متن کاملLactobacillus acidophilus counteracts inhibition of NHE3 and DRA expression and alleviates diarrheal phenotype in mice infected with Citrobacter rodentium.
Impaired absorption of electrolytes is a hallmark of diarrhea associated with inflammation or enteric infections. Intestinal epithelial luminal membrane NHE3 (Na+/H+ exchanger 3) and DRA (Down-Regulated in Adenoma; Cl-/HCO3- exchanger) play key roles in mediating electroneutral NaCl absorption. We have previously shown decreased NHE3 and DRA function in response to short-term infection with ent...
متن کاملEnterotoxigenic Escherichia coli infection and intestinal thiamin uptake: studies with intestinal epithelial Caco-2 monolayers.
Infections with enteric pathogens like enterotoxigenic Escherichia coli (ETEC) is a major health issue worldwide and while diarrhea is the major problem, prolonged, severe, and dual infections with multiple pathogens may also compromise the nutritional status of the infected individuals. There is almost nothing currently known about the effect of ETEC infection on intestinal absorptions of wate...
متن کاملKnockout of MIMP protein in lactobacillus plantarum lost its regulation of intestinal permeability on NCM460 epithelial cells through the zonulin pathway
BACKGROUND Previous studies indicated that the micro integral membrane protein located within the media place of the integral membrane protein of Lactobacillus plantarum CGMCC 1258 had protective effects against the intestinal epithelial injury. In our study, we mean to establish micro integral membrane protein -knockout Lactobacillus plantarum (LPKM) to investigate the change of its protective...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 309 7 شماره
صفحات -
تاریخ انتشار 2015